Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 285 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Site Information

Desc. By: M. DeCorte Locality:

Date Desc.: Elevation: 01/07/91 240 metres Map Ref.: Sheet No.: 8257 GPS Rainfall: No Data Northing/Long.: 7768991 AMG zone: 55 Runoff: Verv slow Easting/Lat.: 452195 Datum: AGD66 Drainage: Well drained

Geology

ExposureType: No Data Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: Existing vertical exposure, Gabbro

Land Form

Rel/Slope Class: Gently undulating rises 9-30m Pattern Type: Rises

1-3%

Morph. Type:Mid-slopeRelief:No DataElem. Type:HillslopeSlope Category:Gently inclinedSlope:4 %Aspect:110 degrees

Surface Soil Condition (dry): Self-mulching, Cracking

Erosion:

Soil Classification

Australian Soil Classification:Mapping Unit:N/AEndocalcareous Self-Mulching Red Vertosol Medium GravellyPrincipal Profile Form:Ug5.36

Medium fine Very fine Moderately deep

ASC Confidence: Great Soil Group: Red clay

All necessary analytical data are available.

Site Disturbance: No effective disturbance other than grazing by hoofed animals

Vegetation: Low Strata - Tussock grass, 0.51-1m, Mid-dense. *Species includes - Bothriochloa pertusa, Bothriochloa

ewartiana

Mid Strata - Tree, 1.01-3m, Isolated plants. *Species includes - Bursaria incana

Tall Strata - Tree, 6.01-12m, Sparse. *Species includes - Eucalyptus erythrophloia, Eucalyptus crebra,

Eucalyptus

Surface Coarse Fragments: 10-20%, coarse gravelly, 20-60mm, rounded, Quartz

Profile Morphology

A11 0 - 0.02 m Dark brown (7.5YR3/2-Moist); ; Medium clay; Strong grade of structure, 2-5 mm, Granular; Smooth-ped fabric; Dry; Weak consistence; 0-2%, medium gravelly, 6-20mm, subangular, dispersed, Quartz, coarse fragments; , Calcareous, , ; , Gypseous, , ; Many, very fine (0-1mm)

roots; Clear, Smooth change to -

A12 0.02 - 0.1 m Dark brown (7.5YR3/2-Moist); ; Medium clay; Strong grade of structure, 10-20 mm, Angular

blocky; Smooth-ped fabric; Medium, (5 - 10) mm crack; Dry; Strong consistence; , Calcareous, , , , Gypseous, , ; Field pH 8.5 (Raupach, 0.05); Many, very fine (0-1mm) roots; Clear, Wavy

change to -

B2 0.1 - 0.4 m Yellowish red (5YR4/6-Moist); ; Medium clay; Strong grade of structure, 10-20 mm, Angular

blocky; Smooth-ped fabric; Medium, (5 - 10) mm crack; Dry; Strong consistence; , Calcareous, , ; , Gypseous, , ; Soil matrix is Slightly calcareous; Field pH 7.5 (Raupach, 0.3); Clear, Smooth

change to -

B3 0.4 - 0.6 m Yellowish brown (10YR5/4-Moist); ; Medium clay; Strong grade of structure, 10-20 mm, Angular

blocky; Smooth-ped fabric; Dry; Strong consistence; Many (20 - 50 %), Calcareous, Medium (2

-6 mm), Nodules; , Gypseous, , ; Field pH 8.5 (Raupach, 0.6); Clear, Wavy change to -

Morphological Notes

Observation Notes

Site Notes

Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD DLR Site ID: 285 Observation ID: 1

DLR Site ID: 285
QLD Department of Primary Industries

Project Name: Project Code: Agency Name:

Laboratory Test Results:

. 556 146	, o u										
pН	1:5 EC			Cations K	Exchangeable Na Acidity		CEC		ECEC	E	SP
	dS/m		J							%	
8.3A		22 7 1	12.6	0.3	0.1		19.7			0	.21
8.5A		33.73	12.0	0.5	0.1		40.7	ı		U	.21
CaCO3	Organic	Avail.	Total	Total	Total	Bulk				-	
%	С %	P mg/kg	Р %	N %	К %	Density Mg/m3	GV	cs	FS %	Silt	Clay
COLE		Gravimetric/Volumetric Water Contents						K sat		K unsat	
	Sat.	0.05 Bar						mn	n/h	mm/h	
	8.3A 8.1A 8.5A CaCO3 %	dS/m 8.3A 8.1A 8.5A CaCO3 Organic C % COLE	pH 1:5 EC Ca Ca dS/m 8.3A 8.1A 8.5A CaCO3 Organic Avail. C P % % mg/kg	pH 1:5 EC dS/m Exchangeable Mg dS/m Ca Mg 8.3A 8.1A 8.5A 33.7J 12.6 CaCO3 Organic C P P P Mg/kg Avail. Total C P P P Mg/kg % % mg/kg %	PH	pH 1:5 EC dS/m Exchangeable Cations Mg Exchangeable Cations K Exchangeable Cations Na Cmol (+)/II 8.3A 8.1A 8.1A 8.5A 33.7J 12.6 0.3 0.1 CaCO3 Organic C P P P N K Mg/kg Avail. Total Total Total K Mg/kg Total Mg/kg Total Mg/kg COLE Gravimetric/Volumetric Water Contest	pH 1:5 EC Exchangeable Cations Exchangeable Na Acidity Ca Mg K Na Acidity Cmol (+)/kg 8.3A 8.1A 33.7J 12.6 0.3 0.1 8.5A Avail. Total Total Total Bulk CaCO3 Organic Avail. Total Total Bulk C P P N K Density % % % % Mg/m3 COLE Gravimetric/Volumetric Water Contents Sat. 0.05 Bar 0.1 Bar 0.5 Bar 1 Bar 5 Bar 15	PH 1:5 EC Exchangeable Cations Na Acidity Cmol (+)/kg Exchangeable CEC Na Acidity Cmol (+)/kg 8.3A 8.3A 8.1A 33.7J 12.6 0.3 0.1 48.7 8.5A 33.7J 12.6 0.3 0.1 Bulk Pa CaCO3 Organic Organic C P P P N K Density GV mg/kg W Mg/m3 W Mg/m3 GV	PH	PH	pH 1:5 EC dS/m Exchangeable Cations (Ca Mg) Exchangeable Na Acidity (Cmol (+)/kg) CEC ECEC ECC ECEC ECEC

Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: Site ID: 285 Observation ID: 1

Agency Name: **QLD Department of Primary Industries**

Laboratory Analyses Completed for this profile

15F1_CA

Exchangeable bases by 0.01M silver-thiourea (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts 15F1_K 15F1_MG Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts CEC by 0.01M silver-thiourea (AgTU)+ 15F1_NA

15F3 15N1 Exchangeable sodium percentage (ESP)

4A1 pH of 1:5 soil/water suspension